Menü

Beschreibung der Atmosphäre durch Näherungsansätze

Barometrische Höhenformel

Ausgehend vom Bodendruck und unter Vernachlässigung der Höhenabhängigkeit der Temperatur, d.h. einer isothermen Atmosphäre mit , ergibt sich die bekannte barometrische Höhenformel durch Einsetzen der Zustandsgleichung für ideale Gase in Gleichung der Höhenformel zu
\begin{equation}
\begin{aligned}
z&= - \frac{R_i \cdot T_0}{g} \int\limits_{p_0}^{p(z)} \frac{1}{p} \cdot dp \\
&= - \frac{R_i \cdot T_0}{g} \cdot ln\frac{p(z)}{p_0}
\end{aligned}
\end{equation}

bzw.:

\begin{equation}
\begin{aligned}
p(z) &= p_0 \cdot exp \left(-\frac{g}{R_i \cdot T} \cdot z \right)\\
\frac{p(z)}{p_0} & =exp \left(-\frac{g}{R_i \cdot T} \cdot z \right)~~.
\label{eqn:barHoehenformel4}
\end{aligned}
\end{equation}

Eine etwas andere Darstellung ergibt sich, wenn man den Quotienten im Exponenten der barometrischen Höhenformel auf eine sogenannte Skalenhöhe bezieht:

\begin{equation}
\begin{aligned}
z_0 &= \frac{R_i \cdot T_0}{g} \\
&=\frac{p_0}{\rho_0 \cdot g}~~.
\end{aligned}
\end{equation}

\begin{equation}
\frac{p(z)}{p_0} = exp \left( -\frac{z}{z_0} \right)~~.
\label{eqn:barHoehenformel5}
\end{equation}

Bei gegebenen Randbedingungen kann die Skalenhöhe auch explizit berechnet werden. Ein oft verwendeter Näherungswert für die Atmosphäre als Ganzes bei Normbedingungen
ergibt m, woraus als Daumenwert die Halbwertshöhe des Luftdrucks von etwa 5.5 km resultiert.

Aufgelöst nach der oft in Aufgaben gefragten Höhe ergibt sich diese aus Gleichung \eqref{eqn:barHoehenformel5} zu
\begin{equation}
z = - z_0 \cdot ln \frac{p(z)}{p_0}~~.
\end{equation}

Isentrope Atmosphäre

Unter Annahme einer adiabaten, reibungsfreien Zustandsänderung spricht man von einer isentropen Atmosphäre, d.h. die Entropie bleibt konstant. Dies entspricht der Tatsache, dass sich Luftmassen in der Atmosphäre bei einer Verschiebung von einem Höhenniveau auf ein Höhenniveau so verhalten, dass sich die Zustandsgrößen Druck, Dichte und Temperatur ohne Wärmeaustausch und ohne Reibungsverluste ändern. Unter der weiterhin gültigen Annahme idealer Gase folgt hieraus.

\begin{equation}
\begin{aligned}
\frac{p(z)}{p_0}& = \left( \frac{\rho(z)}{\rho_0} \right)^\kappa \\
\frac{p(z)}{\rho_z^\kappa} &= \frac{p_0}{\rho_0^\kappa} = konstant~~.
\label{eqn:barHoehenformel9}
\end{aligned}
\end{equation}
Der Isentropenkoeefizient für Luft beträgt und es ergeben sich für die Größen Druck, Dichte und Temperatur die folgenden Beziehungen:

Druckverlauf
\begin{equation}
\frac{p(z)}{p_0}= \left( 1-\frac{\kappa -1}{\kappa} \cdot \frac{z}{z_0} \right)^{\frac{\kappa}{\kappa-1}}
\end{equation}
{\underline{\bf{Dichteverlauf}}}\\
Die Dichten verhalten sich nach Gleichung~\eqref{eqn:barHoehenformel9} analog wie die entsprechenden Drücke:
\begin{equation}
\frac{\rho(z)}{\rho_0}= \left( 1-\frac{\kappa -1}{\kappa} \cdot \frac{z}{z_0} \right)^{\frac{1}{\kappa-1}}
\end{equation}

Temperaturverlauf
\begin{equation}
\frac{T(z)}{T_0}= \left( 1-\frac{\kappa -1}{\kappa} \cdot \frac{z}{z_0} \right)
\end{equation}
Für den Temperaturgradienten in Abhängigkeit der Höhe lässt sich dies umschreiben zu:
\begin{equation}
\begin{aligned}
\frac{T(z)}{T_0}&= \left( 1-\frac{\kappa -1}{\kappa} \cdot \frac{z}{z_0} \right)\\
T(z) &= T_0 \cdot \left( 1-\frac{\kappa -1}{\kappa} \cdot \frac{1}{z_0} \cdot z\right) \\
&= T_0 -\left( \frac{c_p - c_v}{c_p} \cdot T_0 \cdot\frac{\rho_0 \cdot g}{p_0} \right) \cdot z\\
&= T_0 -\frac{R_i \cdot g}{c_p \cdot R_i} \cdot z \\
&= T_0 - \frac{g}{c_p} \cdot z
\end{aligned}
\end{equation}

Unter der Verwendung der Erdbeschleunigung mit ~10 [m/s²] und einer Wärmekapazität bei konstantem Druck von näherungsweise ~1000 [J/(kg K)] ergibt sich eine lineare Temperaturabnahme mit der Höhe von ca. 1 Kelvin pro 100 m bei Standardbedingungen.

Sichern Sie sich jetzt das komplette Wissen als PDF (100% Gratis!)

Skript Buch Vorlage3

Kostenloses PDF-Skript zur Strömungsmechanik

Sparen Sie wertvolle Zeit mit allen wichtigen Informationen zur: Strömungsmechanik, Hydrostatik, Aerostatik und vielem mehr...

×
Show

cal-Q

Die Rechner für Thermodynamik, Strömungsmechanik und Verfahrenstechnik.

Online. Kostenlos. Jetzt vorbeischauen!

Registrieren Sie sich jetzt und sichern Sie sich die kostenfreien Berechnungsprogramme für Ingenieure.