Menü

Fluidkraft auf eine gekrümmte Wand

Analog der Betrachtung an einer ebenen Wand im vorherigen Kapitel, wird die Berechnung der Druckkraft auf eine gekrümmte Wand durchgeführt. Am Beispiel einer zylindrischen Wandung soll die resultierende Kraft F auf die Fläche A berechnet werden. Da hierbei Kräfte sowohl in x- als auch y-Richtung wirken, wird die Gesamtkraft F aufgeteilt in die beiden Kraftkomponenten F_x (horizontal) und F_y (vertikal). Für beide Komponenten werden der Betrag sowie der Angriffspunkt getrennt für das als eben angenommene Flächenelement dA bestimmt.

Fluidkraft auf eine gekrümmte Wand

Fluidkraft auf eine gekrümmte Wand

 

Die horizontale Kraftkomponente dF_x ergibt sich für die Fläche dA zu:
\begin{align}
dF_x ~&=~ {dF \cdot cos \, \alpha}
=~ {(p(y_{S,dA_x}) ~-~ p_0) \cdot dA \cdot cos\, \alpha}
\end{align}

Mit Projektion dA_x von dA senkrecht zur x-Achse folgt daraus
\begin{align}
dF_x ~&=~ {(p(y_{S,dA_x}) ~-~ p_0) \cdot dA_x}
=~ {\rho \cdot g \cdot y_{S,dA_x} \cdot dA_x~~.}
\end{align}

Die Kraftkomponente F_x ergibt sich durch Integration
\begin{align}
F_x ~&=~ {\rho \cdot g \cdot \int\limits_{A} y_{S,dA_x} \cdot dA_x}
=~ {\rho \cdot g \cdot y_{S,dA_x} \cdot A_x}
\end{align}
wobei y_{S,A_x} die Tiefe des Schwerpunktes der projizierten Fläche A_x ist. Somit entspricht die Druckkraft auf eine gekrümmte Wand der Druckkraft auf die horizontale Projektion dieser Wand. Der Abstand e_x der Wirkungslinie zum Schwerpunkt (in Projektion) ergibt sich zu
\begin{equation}
e_x ~=~ \frac{I_{S,A_x}}{y_{S,A_x} \cdot A_x}~~.
\end{equation}

Vertikale Kraft auf eine gekrümmte Wand

Vertikale Kraft auf eine gekrümmte Wand

 

Die vertikale Kraftkomponente dF_y ergibt sich für die Fläche dA mit y_{S,dA_y}=y_{S,dA_x}zu:
\begin{align} dF_y ~&=~ dF \cdot sin \, \alpha
~=~ {\rho \cdot g \cdot y_{S,dA_x} \cdot dA \cdot sin\, \alpha}
~=~ {\rho \cdot g \cdot y_{S,dA_x} \cdot dA_y}
\end{align}

\end{align}
Integration liefert auch hier
\begin{equation}
\begin{aligned}
F_y ~&=~ {\rho \cdot g \cdot \int\limits_{A} y_{S,dA_x} \cdot dA_y }
\end{aligned}
\end{equation}
wobei y_{S,dA_x} \cdot dA_y das Volumen der Flüssigkeitssäule oberhalb von dA darstellt. Somit ergibt sich für das gesamte Flüssigkeitsvolumen
\begin{equation}
\begin{aligned}
F_y ~&=~ {\rho \cdot g \cdot V_A}
\end{aligned}
\end{equation}

 

Diese Kraft F_y wirkt in der Vertikalen, ausgehend vom Schwerpunkt des Volumens V_A nach unten. Physikalisch ist dies gleichbedeutend mit der Gewichtskraft der Flüssigkeitssäule oberhalb der Fläche A. Im Sonderfall, dass die Flüssigkeit die gekrümmte Wand von unten benetzt, ist die Kraftkomponente F_y negativ, d.h. nach oben gerichtet und somit gleichbedeutend mit der 'fehlenden' Flüssigkeit von oben.

Gesamtkraft auf eine gekrümmte Wand

Gesamtkraft auf eine gekrümmte Wand

 

Die Gesamtkraft F auf die gekrümmte Fläche ergibt sich durch Vektoraddition der Kraftkomponenten F_x und F_y zu
\begin{equation}
F ~=~ {\sqrt{F^{2}_{x} ~+~ F^{2}_{y}}}
\end{equation}
und der Winkel zur Horizontalen als
\begin{equation}
tan\, \alpha ~=~ {\frac{F_y}{F_x}~~.}
\end{equation}
Die Wirkungslinie der resultierenden Kraft F geht durch den Schnittpunkt der Wirkungslinien der einzelnen Kraftkomponenten F_x und F_y.

Sichern Sie sich jetzt das komplette Wissen als PDF (100% Gratis!)

Skript Buch Vorlage3

Kostenloses PDF-Skript zur Strömungsmechanik

Sparen Sie wertvolle Zeit mit allen wichtigen Informationen zur: Strömungsmechanik, Hydrostatik, Aerostatik und vielem mehr...

×
Show

cal-Q

Die Rechner für Thermodynamik, Strömungsmechanik und Verfahrenstechnik.

Online. Kostenlos. Jetzt vorbeischauen!

Registrieren Sie sich jetzt und sichern Sie sich die kostenfreien Berechnungsprogramme für Ingenieure.